CALTEC ACADEMY MAKERERE

A LEVEL PURE MATHEMATICS P425/1 REVISION QUESTIONS

ALGEBRA

- 1. (a) The remainder when the expression $x^3 2x^2 + ax + b$ is divided by x 2 is five times the remainder when the same expression is divided by x 1, and 12 less than the remainder when the same expression is divided by x 3. Find the values of a and b
 - (b) Prove by induction that $8^n 7n + 6$ is divisible by 7 for all $n \square 1$.
- 2. (a) Solve for $x: (12--xx)_{22} = (12--aa)_{22}$
 - (b) Solve the equation: $\log_{10} e.In(x^2+1) 2\log_{10} e.Inx = \log_{10} 5$
 - (c) Given that the first three terms in the expansion in ascending powers of x of $(1 + x + x^2)^n$ are the same

as the first three terms in the expansion of $\Box\Box\Box 1 - ^+3^{ax}ax^{\Box}\Box\Box\Box$, find the value of a and n \Box (d) Find the term independent of x in the binomial expansion of $(3x - ^22)^9$

x

- 3. (a) Find x if $\log_5 2$, $\log_5 (2^x 3)$, $\log_5 (\frac{17}{2} + 2^{x-1})$ form an A.P.
 - (b) The first, second, third and n th terms of a series are 4, -3, -16 and $(an^2 + bn + c)$ respectively. Find a,b,c and the sum of n terms of the series.
 - (c) The coefficients of the 5th, 6th and 7th terms in the expansion of $(1+x)^n$ are in an A.P. Find n.
- 4. (a) Show that z + 2i is a factor of $z^4 + 2z^3 + 7z^2 + 8z + 12$, hence solve the equation $z^4 + 2z^3 + 7z^2 + 8z + 12 = 0$.

₂ 🛮

(b) Show the locus of $arg(z - i) = \underline{\hspace{1cm}}$ on the Argand diagram and hence or otherwise find the Cartesian 4

equation of the locus. (c) If x, y a and b are real numbers and if x + iy = a, show that (b^2)

$$(-1)(x^2+y^2) + a^2 = 2abx$$

 $b + \cos\theta + i\sin\theta$

6. A curve is given by
$$y = \frac{2(x-2)(x+2)}{2x-5}$$

- - (i) Determine the turning points on the curve and hence find the range of values of y for which the curve is undefined.
 - ii) Determine the asymptotes to the curve.
 - iii) Sketch the curve.

ANALYSIS

(a) A curve is given parametrically by $x = 2\cos\Box + \cos 2\Box$, $y = 2\sin\Box - \sin 2\Box$.

Show that the gradient at the point parameter \square is $-\tan \frac{1}{2}\square$ and that the equation of the tangent to the curve at this point is $x\sin^{\frac{1}{2}}\Box + y\cos^{\frac{1}{2}}\Box = \sin^{\frac{3}{2}}\Box$.

(a) Show that the particular solution to the equation $x - y dy = y^2 dy + \overline{xy}$, for y(0) = 2, is

$$x^{2} + (y-2)(y+6) + 4In(y-1) = 0.$$

(b) According to Newton's law of cooling, the rate of cooling of a body in air is proportional to the difference between the temperature of the body and that of air. If the air temperature is kept at $25^{\circ}C$ and the body cools from $95^{\circ}C$ to $60^{\circ}C$ in 25 minutes, in what further time will the body cool to $32^{\circ}C$?

(a) Prove that $\Box \Box \Box x - 1^{x} \Box \Box \Box ^2 dx = \Box$ (hint: Use the substitution $x = 3\sin^2\Box + \cos^2\Box ^3$

(b) Evaluate: i)
$$\Box_{0^1 x^3} 6 \overline{x \over x} 8 dx$$
 ii) $\Box_{0^3} a^2 (a^2 - x^2) dx$
$$- \sqrt{\log_e(1+x)} dx$$
 (iii) $\Box^2 x$

(iv)
$$\Box_0 = \sqrt[7]{2} \frac{dx}{2 + \cos x}$$
 $(v) \Box_0 = \sqrt[7]{2} \frac{dx}{2 + \cos x}$ (vi) $\Box_0 = \sqrt[7]{1 + e_{xe^x}} dx$, use $t = e_x = \sqrt[7]{2} \frac{1}{5 \cos x + 4} = \sqrt[7]{2} \frac{dx}{12 + 8x - 4x^2}$

- (a) Solve the differential equation $\frac{dy}{dx} = \sin_2 2x$, if y = 1 when $x = \pi$.
 - (b) A machine depreciates at a rate proportional to its current value. Initially the machine is valued at Shs. 2.5 million, 5 years later it was valued at shs. 1.875 millions. If θ is the value of the machine after t years, form a differential equation and solve it to find;
 - (i.) the value of the machine after 15 years
 - (ii.) the number of years it will take the machine to be valued shs. 0.5 million. 10. (a) Prove that has turning points in the range $0 \le \theta \le 2\pi$ and the function y =then

1+2sinx+2cosx

distinguish between them (b) Show that the tangents at the origin and at the point $(\pi, 0)$ meet at a point whose abscissa is π

> 2 4

TRIGONOMETRY

4

(vii) \square_0

11. (a) Prove that: i) tan+ 2 2 3 5

(b) Solve the following equations,

(i)
$$tan^{-1} \left(x - \frac{1}{x-1} \right) + tan^{-1} \left(x - \frac{1}{x-1} \right) = \pi$$
 (ii) $sin^{-1} \left(\frac{1}{x-1} \right) + 2tan^{-1} \left(\frac{1}{x-1} \right) = \pi$ 2

- 12. (a) Show that $3\cos\theta + 2\sin\theta$ may be written in the form $\sqrt{13}\cos(\theta \alpha)$ where $\tan\alpha = \frac{2}{3}$ hence find the maximum and minimum values of the function giving corresponding values of θ .
 - (b) Prove that if $\tan x = k \tan(A x)$, then $\sin(2x A) = \underline{\qquad} k^{-1} \sin A$. Find all the angles for $0^{\circ} \square x \square 360^{\circ} k + 1$

which satisfy the equation.

$$sin105^{0}$$
 – $sin(-15^{0})$

- 13. (a) Simplify \cos 1050+ \cos (-150) giving your answer in the form $R\sqrt{3}$
 - (b) Given that $x = \tan \theta \sin \theta$ and $y = \tan \theta + \sin \theta$. Prove that $(x^2 y^2)^2 = 16xy$

$$2\tan\Box$$
 $4\tan\Box - 4\tan^3\Box$

(c) Prove that $\tan 2\square^{=} 1$ $\tan_2\square$, and $\tan 4\square = 1$ — $-6\tan^2\square + \tan^4\square$ and hence solve the equation –

$$t^4 + 4t^3 - 6t^2 - 4t + 1 = 0.$$

- 14. (a) Solve $5 \sin(x + 60^{\circ}) 3 \cos(x + 30^{\circ}) = 4$ for $0^{\circ} \le \theta \le 2\pi$
 - (b) Find all the angles between 0^0 and 180^0 for $\frac{2}{\cos^2 2x} 4 = 3\tan 2x$
 - (c) Find the angle B in the triangle ABC where $a = n^2 1$, $b = n^2 n + 1$, and $c = n^2 2n$

VECTORS

- 15. (a) The point C(a, 4, 5) divides the line joining A(1, 2, 3) and B(6, 7, 8) in the ratio \square : 3. Find a and \square .
 - (b) Show that the lines $r = (-2i + 5j 11k) + \square(3i + j + 3k)$, r = (8i + 9j) + t(4i + 2j + 5k) intersect, Hence:
 - (i) find the position vector of their point of intersection.
 - (ii) Find also the Cartesian equation of the plane formed by these two lines.
- 16. (a) Determine the equation of the plane through the points A(1, 1, 2), B(2, -1, 3) and C(-1, 2, -2)
 - (b) A line through the point D(-13, 1, 2) and parallel to the vector $12\mathbf{i} + 6\mathbf{j} + 3\mathbf{k}$ meets the plane in (a) at point E. Find:
 - i) the coordinates of E.
 - ii) The angle between the line and the plane.

- 17. (a) The points A, B, C and D have coordinates (-7, 9), (3, 4), (1, 2) and (-2, -9) respectively. Find the vector equation of the line PQ where P divides AB in the ratio 2:3 and Q divides CD in the ratio 1: -4.
 - (b) The planes m and n are given by equations 3x + 2y + z = 4 and 2x + 3y + z = 5 respectively.

The plane π containing the point A(2, 2, 1) is perpendicular to each of the planes m and n. Find: (i) Distance from the point A to the plane m.

- (ii) Angle between the planes m and n.
- (iii) Cartesian equation of the plane.
- (iv) Equation of the line of intersection of the planes m and n.

GEOMETRY

- 18. (a) Find the equations to the lines through the point (2, 3) which makes angles of 45° with the line x-2y=1.
 - (b) A circle with centre P and radius r touches externally both the circles $x^2 + y^2 = 4$ and

$$^{2}y^{2}$$
 - 6x+8 = 0. Prove that the x- coordinate of P is r + 2 x +

3

- 19. (a) ABCD is a square; A is the point (0, -2) and C is the point (5, 1), AC being the diagonal. Find the equations of the lines AB and BC.
 - (b) The line y=mx and the curve $y=x^2-2x$ intersect at the origin O and meet again at a point A. If P is the midpoint of OA, find the locus of P.
- 20. (a)(i) Find the equation of the tangent to the parabola $y^2 = 4ax$ at point $T(at^2, 2at)$.
 - (ii) Determine the equations of the tangents to the parabola $y^2 = 6x$ from the point (2, 4).
 - (b)(i) If the tangents at points P and Q on the parabola $y^2 = 4ax$ are perpendicular, find the locus of the mid-point of PQ.
 - (ii) The tangent to the parabola $y^2 = 4ax$ at point $P(ap^2, 2ap)$ and $Q(aq^2, 2aq)$ intersect at R. Find the coordinates of R. (c) A curve is given parametrically by x = 3 ($^12 + ^2 + 1$) and y = 6 (1 __+p). Show that the curve is a

p p p

parabola and find its focus.

21. (a) The line y = x - c touches the ellipse $9x^2 + 16y^2 = 144$. Find the value of c and the coordinates of the point of contact. (b) Prove that the equation of the normal to the hyperbola $x_2^2 - y_2^2 = 1$ at the point P (asec θ , btan θ) is

а

 $b ax \sin \theta + by = (a^2 + b^2) \tan \theta$.

(c) Show that the area of the triangle formed by any tangent to the hyperbola $a_{-}x_{2}^{2} - y_{b2}^{2} = 1$ with its asymptote is A=ab square units.

END